
Extended Abstract

Motivation Generalizing control policies across diverse robot embodiments remains a central
challenge in robot learning. While imitation learning (IL) is effective at acquiring skills from expert
demonstrations, it often produces policies that are tightly coupled to the specific embodiment of
the training robot. A policy trained on a fixed-base arm, for example, may struggle to transfer to a
mobile manipulator or a robot with different degrees of freedom. This lack of flexibility limits the
development of generalist robots that can operate across platforms and environments.

To address this, we propose a data-efficient framework that combines the sample efficiency of IL
with the adaptability of reinforcement learning (RL). Our goal is to learn a general policy that can be
quickly adapted to novel robot embodiments without retraining from scratch.

Method We adopt a two-phase training strategy. In Phase I, we train a behavior cloning (BC)
policy using demonstrations from multiple robot embodiments performing the same manipulation
task. Our architecture includes a shared encoder that maps the robot’s state and identity into a
latent space, a latent policy that outputs task-level actions, and a decoder that maps these latent
actions to robot-specific actuation. This modular design enables shared learning while preserving
embodiment-specific control.

In Phase II, we fine-tune the latent policy, as well as the encoder and decoder using Soft Actor-
Critic (SAC) on a single robot embodiment. This selective adaptation allows the policy to adjust to
embodiment-specific dynamics while retaining task-level priors learned from demonstrations.

Implementation We conduct experiments in the Robosuite simulation platform using manipulation
tasks Lift and Door. Expert demonstrations are collected from three robot embodiments, and the BC
model is trained using a masked input/output representation to align diverse robot state and action
spaces. SAC fine-tuning is performed with dense rewards using the robot to assess adaptability.

Results SAC fine-tuning consistently improves average reward over the BC baseline. In the Lift
task, IIWA’s average trajectory reward improves from 1.18 (BC) to 15.10 (SAC), and in the Door task,
Sawyer improves from 373.82 (BC) to 609.88 (SAC). These results demonstrate the effectiveness of
SAC in adapting shared policies to new embodiments.

However, none of the policies achieved consistent task success, highlighting limitations in gener-
alization. Contributing factors include limited demonstration data (10 per robot), short fine-tuning
horizons, and potential optimization difficulty from masking high-dimensional inputs.

Conclusion Our results show that combining behavior cloning with SAC fine-tuning in a shared
latent policy architecture improves reward-based performance across robot embodiments. While
we could not achieve full task success under these constrained settings, the proposed framework
represents a promising step toward scalable, embodiment-agnostic robot learning. Future work should
explore richer data, longer adaptation, and more expressive models to enhance both transferability
and robustness.
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Abstract

Generalizing control policies across robot embodiments is a core challenge in
robotics. While imitation learning (IL) efficiently acquires skills from expert
demonstrations, resulting policies often overfit to the morphology of the training
robot. We propose a two-phase framework that combines the sample efficiency
of behavior cloning (BC) with the adaptability of reinforcement learning (RL)
to develop embodiment-aware, generalizable policies. In Phase I, we train a BC
policy using demonstrations from multiple robot embodiments performing a shared
task. A shared encoder, latent policy, and decoder architecture enables transfer
by mapping observations to a common latent space and decoding them into robot-
specific actions. In Phase II, we fine-tune the latent policy, encoder and decoder
using Soft Actor-Critic (SAC) on a single embodiment, allowing adaptation to
novel dynamics without retraining the task-level policy. We evaluate our approach
on the Lift and Door tasks in Robosuite using three robot embodiments. SAC
fine-tuning consistently improves rewards over BC-only policies, although task
success remains limited due to data and compute constraints. Our results highlight
the potential of modular IL and RL frameworks for scalable cross-embodiment
robot learning and point to future improvements in robustness and generalization.

1 Introduction

The primary objective of our project is to develop an efficient adaptation framework that leverages
online reinforcement learning (RL) to enable robot control policies, which are initially acquired
through imitation learning (IL), to generalize across a broad range of robotic embodiments. While
imitation learning has proven highly effective for acquiring complex skills from expert demonstrations,
its generalization capability is often constrained by the embodiment on which it was trained. A policy
trained on one specific robot (e.g. a fixed-base arm) typically struggles to transfer to another with
different kinematics, dynamics, or degrees of freedom, such as a mobile manipulator or a humanoid
platform. This lack of flexibility represents a major bottleneck in realizing the vision of generalist
robots that can seamlessly operate in unstructured and dynamic real-world settings.

To address this limitation, we propose a framework that combines the sample efficiency and task
priors of imitation learning with the online adaptability and exploration capabilities of reinforcement
learning. Our approach begins with training a behavior cloning (BC) policy across multiple robot
embodiments, allowing the policy to learn a shared representation of task-relevant features. However,
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instead of relying solely on offline demonstrations, we further improve this policy using online RL to
enable adaptation to novel or underrepresented embodiments. This two-stage learning process allows
the policy to retain core task knowledge from demonstrations while refining its control strategy in
response to embodiment-specific variations encountered during deployment.

Concretely, our goal is to train a general policy that can control at least three distinct robot embod-
iments performing fundamental manipulation tasks such as lifting objects and opening doors. We
initially implemented and evaluated these tasks in the RoboCasa simulation environment, which
provides a rich testbed for task objectives that supports domain variation. However, due to limitations
in the availability of robot embodiments within RoboCasa, we then transitioned to the Robosuite
environment, which also supports simulation and testing of robot tasks.

Our architecture is designed to balance shared learning and embodiment-specific adaptation. We
explore a modular design where a shared encoder learns a common latent representation of pro-
prioceptive and task information, and a decoder conditions on robot-specific parameters, such as
kinematic structure or action dimensions, to produce valid actions. The online RL phase fine-tunes
this architecture, improving both task performance and generalization across embodiments through
continuous interaction with the environment.

The ability to train general policies that adapt online is a critical step toward scalable and reusable
robot learning systems. By minimizing the need for per-robot retraining, such policies dramatically
reduce data and compute requirements for real-world deployment. Moreover, our approach offers a
pathway toward lifelong learning for robots, where a single policy can incrementally adapt to new
embodiments, tasks, and environments over time. Ultimately, this project contributes to the broader
goal of building embodiment-agnostic control frameworks for generalist robots.

2 Related Work

Recent efforts to address the cross-embodiment challenge in reinforcement learning (RL) have
explored a range of strategies to enable agents to generalize across different robotic platforms. One
paper focuses on latent space alignment as a mechanism for policy transfer. Wang et al. Wang
et al. (2024) propose a method that maps the state and action spaces of source and target robots
into a shared latent representation using encoders and decoders trained jointly with a latent-space
policy. This framework employs generative adversarial training with cycle consistency and does
not require access to reward signals or task-specific tuning in the target domain. The disadvantage
of this approach from our point of view is the extra training and implementation required for the
decoding and encoding of the latent space. A significant amount of computation is required, and for
the objective described above, it may not be the best approach.

In contrast to representation learning approaches, Doshi, et al. Doshi et al. (2024) introduce Cross-
Former, a scalable, transformer-based policy architecture designed to learn from large-scale multi-
embodiment data. CrossFormer is trained on a dataset comprising 900k trajectories collected from 20
different robot embodiments, including manipulators, mobile bases, quadcopters, and quadrupeds.
The model does not require manual alignment of observation or action spaces and is capable of
controlling all robot types using the same set of network weights. The authors show that CrossFormer
not only matches the performance of expert-tuned policies for individual robots but also outperforms
prior cross-embodiment models in generalization tasks, highlighting the benefits of data scale and
flexible architectures. However, collecting 900k trajectories is not always achievable and requires
extensive computation. So, our method attempts to achieve the same goal but with much more
efficient data usage of the expert demonstrations in RoboCasa and Robosuite.

Addressing the problem of multi-source transfer across heterogeneous domains, Heng et al. Heng
et al. (2022) present the Cross-domain Adaptive Transfer (CAT) framework. Unlike previous work
limited to single-source transfer and shared state-action spaces, CAT learns task-specific state-action
correspondences from multiple source policies and adaptively integrates them to guide learning on a
new target task. Although effective, we think that CAT does not generalize easily to settings involving
continuous or unsupervised embodiment adaptation.
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3 Method

We adopt a two-phase training strategy to develop robotic control policies that generalize across
multiple embodiments and are capable of adaptation to specific robot hardware. The method consists
of an offline training via Behavior Cloning (BC) from expert demonstrations and an online fine-tuning
using Soft Actor-Critic (SAC). This framework enables us to share skills across robot embodiments
while retaining the capacity to specialize when necessary.

3.1 Phase I: Behavior Cloning in Latent Space

In the first phase, we collect expert demonstrations for a the tasks ( Lift and Door) across a set of
three robot embodiments. These trajectories consist of timestamped observations and corresponding
actions. Since each robot has different observation and action dimensions, we define:

• A set of shared observation keys that are common to all robots (e.g., end-effector position,
object pose). However, they present different dimensions for each embodiment, so we need
a mask to select the correct space for each robot.

• The maximum state and action dimensions observed among all robots, to define padded
input/output spaces.

• A robot-specific binary mask over states and actions, indicating which dimensions are active,
as described before.

Our BC model is composed of three modules:

1. Encoder Eϕ: maps a padded and masked state s ∈ Rds and a robot identifier r ∈ N to a
latent representation z ∈ Rdz :

z = Eϕ(s, r)

2. Latent Policy πθ: a stochastic Gaussian policy over latent actions az ∼ N (µ(z), σ(z)2).

3. Decoder Dψ: maps the latent action az ∈ Rdaz and robot ID r back to the padded action
space â ∈ Rda , applying the appropriate action mask:

â = Dψ(az, r)

The policy is trained to minimize the mean squared error between â and the expert action aexpert,
across demonstrations from all robots:

LBC = E(s,a,r)

[
∥Dψ(πθ(Eϕ(s, r)), r)− a∥2

]
Robot-specific conditioning is incorporated through a one-hot embedding of the robot ID, which is
input to both the encoder and decoder. This enables the model to share structure across robots while
still accounting for embodiment-specific variations.

3.2 Phase II: Fine-Tuning with Soft Actor-Critic (SAC)

To improve task performance and embodiment-specific precision, we fine-tune the policy using
reinforcement learning with the Soft Actor-Critic (SAC) algorithm. We chose SAC because it is
off-policy, which allow us to take advantage of the online algorithm while having more exploration
and robustness with the Replay Buffer.

Architecture and Initialization

We initialize the actor network with the BC-trained latent policy πθ, and reuse the same encoder
Eϕ and decoder Dψ. Two critic networks Qω1 and Qω2 are trained to estimate the Q-values of
state-action pairs in latent space. Target networks Q′

ω1
and Q′

ω2
are maintained for stability via

averaging.
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Replay Buffer and Warmup

A replay buffer stores tuples (s, a, r, s′, d, rid). To address the cold-start problem, we use a warm-up
phase to populate the buffer either by acting in the environment with the initial policy or by preloading
expert demonstrations. In this case, we simply acted on the environment since we had the initial BC
policy.

Critic Update

Given a batch of transitions, the target value is computed using the target networks and sampled
latent actions:

a′z ∼ πθ(Eϕ(s
′), r) â′ = Dψ(a

′
z, r)

y = r + γ(1− d) min
i=1,2

Q′
ωi
(Eϕ(s

′), â′)

The critic loss is:
Lcritic = E

[
(Qω1

(z, â)− y)2 + (Qω2
(z, â)− y)2

]
Actor and Encoder-Decoder Update

The actor loss encourages high Q-value actions while maximizing entropy:

Lactor = Ez∼Eϕ(s) [α log πθ(az|z)−Qω1
(z,Dψ(az, r))]

We also update the encoder Eϕ and decoder Dψ jointly with the actor to refine the latent representation
and embodiment-specific action decoding.

Target Network Updates

Critic target networks are updated with soft updates:

ω′
i ← τωi + (1− τ)ω′

i, with τ ≪ 1

3.3 Evaluation Protocol

Both the BC and SAC policies are evaluated over 20 test episodes per robot embodiment. Each
episode is capped at 5000 timesteps. The evaluation measures cumulative task reward per episode,
allowing comparison between:

• The generalization capability of the shared BC policy.

• The improvement from SAC-based fine-tuning for each embodiment.

4 Experimental Setup

4.1 Environment and Data

All experiments are conducted in the Robosuite simulation framework Zhu et al. (2025), which
we selected after initial trials in RoboCasa. While RoboCasa was used for early testing due to its
high-fidelity manipulation environments Nasiriany et al. (2024), it currently supports only a single
robot embodiment. As our study specifically targets cross-embodiment generalization, we migrated
to Robosuite for its broader support of heterogeneous robots and consistent simulation structure.

Robosuite is particularly well-suited to our study for several reasons. First, it provides a diverse
collection of robotic embodiments, including fixed-base arms (e.g., Sawyer, Panda), mobile manip-
ulators (e.g., Stretch), and dual-arm systems (e.g., Baxter), all exposed through a consistent task
interface. This makes it an ideal testbed for studying embodiment generalization.

Second, Robosuite supports a range of manipulation tasks with standardized reward functions and
task success criteria, including Lift and Door. These tasks provide both dense and sparse rewards,
enabling stable offline training and meaningful online improvement.
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Third, Robosuite’s deterministic physics engine ensures repeatable results and fine-grained control
over environment parameters, which is essential for consistent evaluation across training and testing
phases. The dataset of demonstrations used for behavior cloning is generated using scripted expert
policies across three distinct robot embodiments per task. This enables the policy to learn from
diverse embodiment configurations while maintaining a shared task objective.

(a) Example RoboCasa environment (b) Example Robosuite environment for Stack task

Figure 1: RoboCasa and Robosuite environments

4.2 Experiments

Our experimental procedure is designed to evaluate the effectiveness of combining offline imitation
learning with online reinforcement learning for embodiment-agnostic policy adaptation. We focus
on a controlled set of manipulation tasks in the Robosuite environment, leveraging its standardized
interface, physics simulation, and consistent task definitions across multiple robotic embodiments.

We begin by training a behavior cloning (BC) policy on a single manipulation task using demonstra-
tions collected from three distinct robot embodiments (Sawyer, Panda, and IIWA). These demonstra-
tions are generated using scripted expert policies, and the BC model is trained to minimize prediction
error on the action sequences. The policy is trained using the shared encoder–decoder architecture
described in Section 3, with shared latent representations and embodiment-aware decoding.

After BC training, we evaluate the generalization ability of the policy by testing it on a single robot
embodiment on the same task. The initial evaluation provides a measure of how well the policy
transfers across embodiments based solely on demonstration-based supervision. Following this
zero-shot test, we fine-tune the policy using Soft Actor-Critic (SAC) with dense reward signals
provided by the Robosuite environment. The online fine-tuning is conducted using the same single
embodiment, allowing the policy to adapt to embodiment-specific dynamics and discrepancies not
captured during offline training.

This process is repeated across a predefined set of manipulation tasks (Lift and Door), with each task
run independently through the pipeline of BC pretraining, evaluation, SAC fine-tuning, and post-
adaptation evaluation. For each configuration, we run evaluation episodes on the test embodiment
both before and after fine-tuning. Each evaluation consists of 20 episodes, each with a maximum of
5000 time steps.

Performance is assessed using two key metrics: the average accumulated reward over each evaluation
run, and the success rate, defined as the proportion of episodes in which the task-specific success
condition is met (e.g., lifting an object above a height threshold or opening a door). These metrics
provide complementary insights into the overall competence of the policy (via reward) and its
robustness to embodiment variation (via success rate). Results are aggregated across tasks and
embodiments to provide a comprehensive view of generalization and adaptability.
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5 Results

5.1 Training

(a) Loss Curve for Door Task (b) Loss Curve for Lift Task

Figure 2: Behavior Cloning Training Loss Curves for Door and Lift Tasks in the Robosuite Environ-
ment

(a) IIWA (b) Sawyer (c) Panda

Figure 3: SAC Fine-Tuning Loss Curves for the Door Task in the Robosuite Environment

(a) IIWA (b) Sawyer (c) Panda

Figure 4: SAC Fine-Tuning Loss Curves for the Lift Task in the Robosuite Environment

Figure 2 shows the training and validation loss curves for behavior cloning (BC) on the Door and Lift
tasks. For the Door task (Figure 2a), the loss decreases rapidly in the first 20 epochs and converges
to a low value around 1.0. The close alignment between training and validation losses suggests
strong generalization and minimal overfitting. In contrast, the Lift task (Figure 2b) shows a slower
convergence from an initial loss of about 2.0 to around 1.2, indicating a more challenging learning
problem, though the training remains stable and well-aligned with validation.

Figures 3 and 4 present the training loss curves during SAC fine-tuning for the Door and Lift tasks,
respectively, across three robot embodiments (IIWA, Sawyer and Panda). In all cases, we observe a
consistent downward trend in loss, though with higher variance in the early stages, which is a common
characteristic of reinforcement learning optimization. The Door task generally exhibits smoother
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convergence, while the Lift task demonstrates more variability in some embodiments, suggesting
differing levels of task difficulty and embodiment compatibility.

Overall, these results confirm that behavior cloning provides a reliable policy initialization, especially
for the Door task. SAC fine-tuning further reduces the loss and helps adapt the latent policy to each
specific robot embodiment, though the extent of improvement varies depending on the task and robot
configuration.

5.2 Evaluation

(a) Average Reward for Door Task (b) Average Reward for Lift Task

Figure 5: Evaluation results for IIWA, Sawyer, and Panda embodiments on Door and Lift tasks using
Behavior Cloning (BC) and SAC fine-tuning.

Figure 5 shows the average reward achieved by policies trained using Behavior Cloning (BC) and
those fine-tuned with Soft Actor-Critic (SAC) across three robot embodiments (IIWA, Sawyer, and
Panda) for the Door and Lift tasks.

In the Door task (Figure 5a), SAC fine-tuning consistently improves performance over the BC baseline
for all embodiments. The Sawyer robot exhibits the most significant improvement, with average
reward increasing from 373.82 (BC) to 609.88 (SAC), suggesting strong alignment between the
embodiment and the task. IIWA sees a modest increase from 138.28 to 151.09, indicating that the BC
policy was already reasonably effective. The Panda robot performs poorly on this task under both BC
and SAC (21.17 to 23.89), likely due to a mismatch between the embodiment and the demonstrations
or task dynamics.

For the Lift task (Figure 5b), SAC also improves reward in all embodiments, though the degree of
improvement varies. The IIWA robot shows the largest gain, increasing from 1.18 to 15.10, indicating
that SAC is highly effective in enhancing an initially weak BC policy. Panda improves from 2.02 to
4.69, showing moderate benefit. The Sawyer robot, however, performs poorly in both cases (0.08 to
0.29), suggesting difficulties in adapting the policy to the Lift task for this specific embodiment.

In summary, SAC fine-tuning enhances BC-initialized policies across all embodiments and tasks,
but the magnitude of improvement is highly dependent on the specific robot-task pairing. These
results underscore the need for embodiment-aware policy training and evaluation when designing
generalizable robotic control strategies.

Another metric used for evaluation is success rate. In our case, we achieved 0 success across the
board for both the BC and the SAC fine-tuned policies.
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Table 1: Total Reward Comparison for Door Task
Method IIWA Sawyer Panda

BC 138.28 373.82 21.17
SAC Finetuned 151.09 609.88 23.89
Performance Improvement 1.09x 1.63x 1.12x

Table 2: Total Reward Comparison for Lift Task
Method IIWA Sawyer Panda

BC 1.18 0.08 2.02
SAC Finetuned 15.10 0.29 4.69
Performance Improvement 12.80x 3.625x 2.32x

6 Discussion

We observe that fine-tuning with SAC consistently improves the average reward obtained by policies
initially trained via behavior cloning (BC), supporting the hypothesis that reinforcement learning
can effectively adapt a general latent policy to different robot embodiments. This improvement is
especially evident in cases where the initial BC policy performed poorly, such as the Lift task with
the IIWA robot, where SAC fine-tuning led to a more than tenfold increase in reward. These results
highlight the potential of combining offline imitation learning with online reinforcement learning to
bridge embodiment gaps in robotic control.

However, despite these improvements in reward, none of the evaluated robot embodiments achieved
reliable task success under either BC or SAC policies. For example, while the Sawyer robot achieved
relatively high reward on the Door task after SAC fine-tuning, its performance on the Lift task
remained minimal, suggesting that reward improvement alone may not translate into task completion.
This disconnect underscores the challenge of achieving both generality and robustness in multi-
embodiment policy learning.

Several factors likely contributed to the limited performance observed. First, the dataset used for
behavior cloning consisted of only 10 demonstration trajectories per robot embodiment. While
our goal was to explore data-efficient policy learning, this small dataset was likely insufficient for
capturing the full diversity of embodiment-specific state-action distributions needed for generalization.
In addition, our BC policy operated in a shared latent space using a masked encoder-decoder
architecture. Although this allowed for scalable multi-embodiment training, it may have constrained
expressiveness by requiring all embodiments to conform to a common latent representation, which
may not fully capture their kinematic or dynamic differences.

Second, the SAC fine-tuning phase was limited in both training duration and computational budget.
Due to these constraints, we performed relatively few episodes of interaction per embodiment, which
likely limited the policy’s ability to meaningfully adapt. Furthermore, the reward signals in tasks like
Lift and Door can be sparse and delayed, further slowing the learning process and requiring more
samples for convergence. In practice, longer fine-tuning could help mitigate this issue.

Lastly, we note that the masking and padding approach used to align observations and actions
across robots introduces challenges in optimization. The policy must learn to ignore irrelevant
padded dimensions and focus only on the masked entries, which may introduce noise and instability,
particularly in high-dimensional observation spaces.

In future work, we suggest exploring richer datasets with more demonstrations per embodiment,
improved fine-tuning strategies such as prioritized experience replay, and alternative architectures
for multi-robot generalization. For example, conditioning policies explicitly on robot-specific
embeddings or using transformer-based architectures could help better leverage embodiment-specific
priors while still enabling generalization. Additionally, using task success as an auxiliary signal
during training could better align policy optimization with the final performance metric of interest.
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7 Conclusion

In this work, we presented a two-phase learning framework that combines behavior cloning (BC)
with Soft Actor-Critic (SAC) fine-tuning to develop generalizable policies across multiple robot
embodiments performing shared tasks. By leveraging a shared encoder-decoder architecture and a
masked latent policy representation, we enabled scalable training across diverse embodiments in a
common latent space.

Our results show that SAC fine-tuning consistently improves the average reward over policies
initialized via BC, particularly in cases where the BC policy is weak. This confirms the effectiveness
of reinforcement learning for embodiment-specific adaptation. However, despite these gains, none of
the tested embodiments achieved reliable task success, highlighting limitations in generalization and
robustness under data-scarce and time-constrained conditions.

These findings suggest that while shared latent architectures offer a promising path toward scalable
multi-embodiment learning, additional data, extended fine-tuning, and more expressive policy repre-
sentations are necessary to achieve reliable generalization. Future work should focus on addressing
these limitations through richer demonstration datasets, improved optimization strategies, and ar-
chitectures better suited to capturing embodiment-specific dynamics while retaining the benefits of
shared representation learning.

8 Team Contributions

• Ariel Bachman: Handled the evaluation pipeline, including defining metrics, running
generalization tests and analyzing the results.

• Raúl Molina Gómez: Focused on the implementation of the SAC algorithm and integrating
cross-embodiment data from the Robosuite environment. He also led the training and tuning
of the policy.

• Daniel Voxlin: Designed and conducted the imitation learning baseline experiments, includ-
ing policy transfer tests and data collection across different robot types.

Changes from Proposal The roles of Ariel Bachman and Daniel Voxlin were switched to ac-
commodate scheduling constraints that arose during the quarter. Nonetheless, all team members
collaborated closely throughout the project, and contributions often extended beyond the originally
assigned responsibilities.
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